Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Microbiol ; 292: 110066, 2024 May.
Article in English | MEDLINE | ID: mdl-38555788

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS), which has posed substantial threats to the swine industry worldwide, is primarily characterized by interstitial pneumonia. A disintegrin and metalloproteinase 17 (ADAM17) is a multifunctional sheddase involved in various inflammatory diseases. Herein, our study showed that PRRS virus (PRRSV) infection elevated ADAM17 activity, as demonstrated in primary porcine alveolar macrophages (PAMs), an immortalized PAM cell line (IPAM cells), and the lung tissues of PRRSV-infected piglets. We found that PRRSV infection promoted ADAM17 translocation from the endoplasmic reticulum to the Golgi by enhancing its interaction with inactive rhomboid protein 2 (iRhom2), a newly identified ADAM17 regulator, which in turn elevated ADAM17 activity. By screening for PRRSV-encoded structural proteins, viral envelope (E) and nucleocapsid (N) proteins were identified as the predominant ADAM17 activators. E and N proteins bind with both ADAM17 and iRhom2 to form ternary protein complexes, ultimately strengthening their interactions. Additionally, we demonstrated, using an ADAM17-knockout cell line, that ADAM17 augmented the shedding of soluble TNF-α, a pivotal inflammatory mediator. We also discovered that ADAM17-mediated cleavage of porcine TNF-α occurred between Arg-78 and Ser-79. By constructing a precision mutant cell line with Arg-78-Glu/Ser-79-Glu substitution mutations in TNF-α, we further revealed that the ADAM17-mediated production of soluble TNF-α contributed to the induction of inflammatory responses by PRRSV and its E and N proteins. Taken together, our results elucidate the mechanism by which PRRSV infection activates the iRhom2/ADAM17/TNF-α axis to enhance inflammatory responses, providing valuable insights into the elucidation of PRRSV pathogenesis.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Swine , Animals , Porcine Reproductive and Respiratory Syndrome/metabolism , Tumor Necrosis Factor-alpha/metabolism , Lung , Macrophages, Alveolar
2.
Redox Biol ; 71: 103112, 2024 May.
Article in English | MEDLINE | ID: mdl-38461791

ABSTRACT

The Warburg effect, also referred as aerobic glycolysis, is a common metabolic program during viral infection. Through targeted metabolomics combined with biochemical experiments and various cell models, we investigated the central carbon metabolism (CCM) profiles of cells infected with porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. We found that PDCoV infection required glycolysis but decreased glycolytic flux, exhibiting a non-Warburg effect characterized by pyruvic acid accumulation. Mechanistically, PDCoV enhanced pyruvate kinase activity to promote pyruvic acid anabolism, a process that generates pyruvic acid with concomitant ATP production. PDCoV also hijacked pyruvic acid catabolism to increase biosynthesis of non-essential amino acids (NEAAs), suggesting that pyruvic acid is an essential hub for PDCoV to scavenge host energy and metabolites. Furthermore, PDCoV facilitated glutaminolysis to promote the synthesis of NEAA and pyrimidines for optimal proliferation. Our work supports a novel CCM model after viral infection and provides potential anti-PDCoV drug targets.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Swine , Animals , Coronavirus/metabolism , Pyruvic Acid/metabolism , Swine Diseases/metabolism , Swine Diseases/pathology , Coronavirus Infections/pathology
3.
Vet Microbiol ; 279: 109674, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36739813

ABSTRACT

The metabolic pathways of central carbon metabolism (CCM), glycolysis and the tricarboxylic acid (TCA) cycle, are important host factors determining the outcome of viral infection. Thus, it is not surprising that viruses easily manipulate CCM for optimized replication. Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has devastated the swine industry worldwide for over 30 years. However, whether PRRSV reprograms CCM is still unclear. In this study, we found that PRRSV infection increased the intensity of cellular uptake of glucose and glutamine, two main carbon sources for mammalian cells. Deprivation of glucose and/or glutamine significantly reduced PRRSV replication; restricted entry of glucose and glutamine into CCM inhibited PRRSV proliferation. We further found that PRRSV infection elevated glycolysis and maintained the TCA cycle flux. Furthermore, preventing the flow of glycolysis or the TCA cycle led to a reduction in PRRSV proliferation. The anaplerotic usage of glutamine in the TCA cycle partially rescued PRRSV growth by replacing glutamine with α-ketoglutarate (α-KG), an intermediate of the TCA cycle. Interestingly, the addition of α-KG in replete medium also promoted PRRSV proliferation. Taken together, these results reveal that PRRSV infection promotes cellular uptake of glucose and glutamine to provide the energy and macromolecules required for PRRSV replication, and optimal PRRSV replication occurs in cells dependent on glycolysis and the TCA cycle.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Swine , Animals , Porcine respiratory and reproductive syndrome virus/metabolism , Glutamine/metabolism , Virus Replication , Glucose/metabolism , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...